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A theory of nuclear spin-lattice relaxation by unstable, overdamped quasi-spin-waves —or
critical polarization fluctuations — in order-disorder ferroelectrics is developed. If relaxa-
tion due to competing processes is not too fast, such an unstable mode will dominate the mag-
netic dipolar or electric quadrupolar relaxation rate not only right at the Curie point, but
also in its neighborhood. In such a case, the temperature dependence of T is given by
T, < |IT— TcI", where 0.5=<n=2, depending on the details of the interaction between the ferro-
electric dipoles and the Brillouin-zone size. The theory is applied to the case of ferroelec-
tric dicalcium strontium propionate. This crystal exhibits an anomalous dip in 7 on ap-
proaching Tcwhich we believe is due to magnetic dipolar coupling to an overdamped, unstable

quasi-spin-wave mode.

INTRODUCTION

The nature of the elementary excitations!'2 in
“order- disorder”-type ferroelectric crystals -
which can be described as quasi-spin-waves? —
has recently attracted a great deal of attention,
but the experimental evidence is still rather
scarce. It has been suggested®* that nuclear spin-
lattice relaxation might represent a useful new
method to study elementary excitations and lattice
instabilities in this type of system, and that the
information obtained would be complementary to
that from dielectric, ultrasonic, Raman, and neu-
tron-scattering data. The reasoning goes as fol-
lows: The nuclear magnetic spin-lattice relaxa-
tion time T, of a nonequilibrium system is a mac-
roscopic transport coefficient which is related to
the statistical fluctuations in the equilibrium en-
semble. The natural fluctuations, which occur in
a system in equilibrium, are on the other hand re-
lated by the fluctuation-dissipation theorem to the
imaginary part of the generalized dielectric sus-
ceptibility. In crystals undergoing ferroelectric
phase transitions, the dominant contribution to the
dissipative part of the susceptibility arises from
that mode whose frequency approaches zero at the
phase transition, while the frequencies of the
other lattice modes stay comparatively high. If
relaxation due to competing processes is not too
fast, such an unstable ferroelectric mode will
dominate the nuclear spin-lattice relaxation rate

T;! not only right at the Curie point but also in
its neighborhood.

Though nuclear-magnetic-resonance techniques
have been widely used for the study of ferroelec-
tric phase transitions, S relatively little attention
has been paid so far to the study of quasi-spin-
waves or polarization fluctuations and unstable
modes by T; measurements. It has been only in
a few cases that critical polarization fluctuations
were reported to dominate electric quadrupole®
spin-lattice relaxation and in only one case? was
it suggested that magnetic dipolar spin-phonon
coupling to a ferroelectric mode is the rate deter-
mining relaxation mechanism.

In this paper, we wish to present a theory of
spin-lattice relaxation by ferroelectric quasi-spin-
waves for the case of large damping. The case of
small damping will be treated in a subsequent
paper. Further, we would like to report the ob-
servation of an anomalous decrease in the proton
spin-lattice relaxation time on approaching the
ferroelectric Curie point (T =8.5 °C) in dicalcium
strontium propionate, Ca,Sr(CH;CH,CO;)s (hence-
forth designated DSP), which we believe is due to
magnetic dipolar coupling to an overdamped tem-
perature-dependent ‘ferroelectric” mode.

EXPERIMENTAL RESULTS

Single crystals of DSP were grown from water
solutions of Ca,Sr(CH3CH,CO,)q following Matthias
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and Remeika.® In agreement with the data of other
investigators, 7 the paraelectric space group was
found to be D} or D¢ and the lattice constants a
=12.53 & and ¢=17.26 A. The ferroelectric space
group’ is CZ or Ci, and the unit cell dimensions
are’a=12.48 A and ¢=17.13 A. The crystal is
polarized along the ¢ direction. The ferroelectric
transition at 8. 5 °C seems to be a second-order
one.?

The proton spin-lattice relaxation time Ty was
measured by the 90°-90° pulse method from
- 170 to+90°C at 9, 15, and 23 MHz. The experi-
mental data are presented in Fig. 1. From 90°C
down to room temperature, T, slowly decreases
with decreasing temperature. The activation en-
ergy deduced from the curve of logT, versus 1/T
is about 0.1 eV. In the vicinity of the Curie point,
a new relaxation mechanism becomes rate deter-
mining, resulting in an anomalous dip in the pro-
ton Ty. The shape of the dip does not depend on
the Larmor frequency within the 9- 23-MHz
range. At still lower temperatures, the same
mechanism which dominated T; above room tem-
perature takes over again. T, slowly decreases
with decreasing temperature until a broad mini-
mum at about — 173 °C is reached. The depth of
the minimum agrees with the value expected for
hindered rotation of CH; groups. As the correla-
tion times deduced from the 7y minimum nearly
exactly coincide with the lifetime of the CHj pro-
tons at a given site, obtained from quasielastic
neutron-scattering data,® one may safely ascribe
this motion to hindered rotation of the — CH; group
around its Cy axis. The activation energy for CHj
rotation does not significantly change at the Curie
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point demonstrating that — CH; rotation plays no
role at the ferroelectric transition.

The T, data thus show that both at high and at
low temperatures, — CHz rotation dominates the
relaxation process, but that in the vicinity of the
Curie point a new reorientational mechanism be-
comes rate determining.

Though the crystal structure of DSP has not yet
been completely solved, it seems to be clear that
polarization reversal in this crystal is accompa-
nied by a reorientation of two out of the six CH,
CH,CO, groups. 7 The twofold symmetry about the
Cearroxy1-C, axes in the paraelectric phase further
suggests that above T the propionate groups are
flipping between two equilibrium positions. The
low value of the room-temperature proton second
moment (M,=4.5 G?) of powdered DSP supports
this model. This M, value cannot be explained by
— CHj, rotation alone — which would yield about
10 G? — and requires the existence of additional
molecular motion which must be associated with
the whole propionate group. The correlated fluc-
tuations of these CH3CH,CO, dipoles may well
form a kind of “quasi-spin”-wave dipolar ferro-
electric mode, 2 the critical slowing down of
which may be responsible for the observed dielec-
tric dispersion® as well as the anomalous behav-
ior of the proton T, in the vicinity of T'c.

THEORY OF NUCLEAR SPIN RELAXATION BY OVER-
DAMPED QUASI-SPIN-WAVE MODES

Let us calculate the anomalous relaxation rate
T7! due to the critical slowing down of an over-
damped quasi-spin-wave mode, which modulates
the interaction Hamiltonian'®

Ca,Sr(CH, CH, CO0)
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FIG. 1. Temperature dependence of the proton spin-lattice relaxation time in powdered DSP.
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In the following, we shall assume that 3C; stands
for magnetic dipole-dipole interactions, but the
extension to the case of electric quadrupole inter-
actions is straightforward, and the predicted tem-
perature dependence of T, is the same. Here
A‘® are operators acting on spin variables,
whereas the “lattice” functions F® are assumed
to be implicit functions of time through their de-
pendence on the eigenvectors of the quasi-spin-
wave (or polarization) mode.

The total Hamiltonian of our problem is

3(3:5(:;4—361, (2)

where SC, is small compared to the Zeeman term
H,==7yR i Ho The spin-lattice relaxation rate
will depend on the spectral density of the auto-
correlation function of the matrix elements of 3¢,
with respect to the eigenstates of 3C,:

G(t)=(( |3¢, (0) |[)(F |3k (&) |4 . (3)

If only one species of magnetic nuclei is present,
we get in the spin temperature approximation

1/Ty =370 +1) (2/N) [P (w,) + TP (2w,)], (4)

where N’ is the total number of spins in the sam-
ple. The spectral densities J*® (w) which are
defined as

J(k)(wk) _ 2 f"'” F(k) (0 F{(k) (t» eiwktdt (5)

i<, ' <j
can be - in the case of molecular crystals such
as DSP - conveniently divided into an intramo-
lecular and an intermolecular part:

Z; (Fij(O)Fij(t)> = 2 (Faa ‘4 BB (O)Fnta ,BB'(t»
i<J ala’'y,B=8
+ E <Fma’,88’(0)Faa',BB'(t)> .
a,a’,B< B8

(6)

Here B represents the index of the molecular
group, whereas a stands for the index of the nu-
clei within such a group. The brackets stand for
the ensemble average. The first term in Eq. (6)
thus represents a sum of the intramolecular and
the second term a sum of the intermolecular con-
tributions. This division makes sense if the dis-
tances between the nuclei within a group are much
smaller than the distances between different
groups.

We shall treat the case of a quasi-spin-wave
with S=% where the molecular group flips between
two equilibrium positions, -1 or 2-, correspond-
ing to §;=3% or S;=- 3. The variation of F¢/ with
time is in such a case determined by the time
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variation of the component p of the group electric
dipole moment along the ferroelectric axis:

Faanss 0)=2[1+ps (1)] Foqr, e (1,1)
+3[1=ps ()] Four, 5o (2,2)
for B=p, (7a)
Foar, 560 (8)=3[1+p ()] [1+pg (O F qor,ppe (1,1)
$[1+p5 ()] [1- pge )] Fogr e (1,2)
+3[1=pg D] [14p5 (] Fogr e (2, 1)
$[1-ps O [1=pe (O] Foge 50 (2,2),
for B=8' (7b)

where p=p/lul and 1 refers to the right and 2 to
the wrong equilibrium site. Introducing the Fou-
rier components of pg

pat)=(1/VN) 224p(@, 1) s | (®)

where N is the number of molecular groups, we
can express J'¥(w,) in terms of the spectral den-
sities of the Fourier components of the polariza-
tion fluctuations. In the random-phase approxi-
mation, we obtain

+

+

i;.(F.-, (0)F;;(t)) =const +1

X 2

a<a,Bap

2 [Paa',BB'Za;

16 o,a’,B<B

1 Fyrpr 3 246 @00p(~ G, 1))
~ (p@, 0p(-, 1)

“Raanssd G 088 (Fam T )(p(d, 0p(-T, 1)

+sma,’BB‘E <P( 0)p (-4,¢))

X <p(§l’ O)p(— ar, £ rei@+ (i‘B—FB:))] . (9)
Here we have
|AF 4or 05 |2 = |Faarss(l, 1)-Faanss(2,2)|%, (10a)
Pyorppr =2[F%, ogee (1,1) + F‘m, sp (2,2)

+2F2 155 (1,2) = 2F you 50 (1,1) Fo g 5 0 (2, 2)

= 2F 4or,86(1, 2 F g (2,1)] (10b)
Ryarpp =2[Faansp(1,1) + F e (2, 2)
= 2F 55 (1,2) = 2F 4o 1850(1, 1) Foge5.00(2, 2)
+2F4qn g0 (1,2) F yqu g (2,1)], (10c)
Saar,se = [Faanse (1, 1)+ F5 4056 (2, 2)

+2F a0 (1,2) 4+ 2F 4 gu g o (1, 1) F e 5 (2, 2)
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- 4Faa’,B 8 (1, l)Faa',B B! (1’ 2)
=4F 4onpp (2,2) Fyorpe (1,2)
+2F gqo5p (1, 2) F g0 p5:(2,1)] , (10d)

with g+ 8.

If the division of the interactions into an intra-
and an intergroup part is well justified — as is the
case in DSP - the terms with P, R, and S are neg-
ligibly small as compared to the |AF |2 term in
Eq. (9). In such a case, we get from (5)

2

1
J(k)(wk)=ma<a’.ﬂ= B I A F® |2

ao’,BB’

xz’f::(i’(ﬁ, 0)p(-q,2)) e*rtat . (11)
g

Using the fluctuauon-dissipation theorem, we
can relate the spectral densities of the Fourier
components of the polarization fluctuations to the
imaginary part of the wave-number-dependent
generalized dielectric susceptibility X(q, w).

In the classical limit 27T > 7w, we obtain

J(k)(wk) =A(kT/Cl)k) 23 X "(.(iy wk) ’ (12)
where
A=t 5| AF® | TV/NW) ey

a<aiB=8’
with €y=1/47 in cgs units. The dominant contri-
bution to the dissipative part of the susceptibility
arises from the mode whose frequency approaches
zero at the phase transition. In view of the appar-
ent overdamping of this quasi-spin-wave mode in
many order-disorder ferroelectrics, we do not
attempt to fit x "’ (g, ) to a damped harmonic os-
cillator function, but rather use the Kubo expres-
sion!! for an Ising model:

x(w,q)=8C/[1-BI@) +iwT] (13)

s

where B=(kT)~ ! and C=Np?/(e,V). The dissipa-
tive part of the generalized dynamic susceptibility
is then!! obtained as

X ", = X@, 0 {wrs/[1+(wry)?}, (14)
where for T>T

T4=To T/IT - Tc@)] , (152)

x(@,0=pCT/IT-T:@)], (15b)

and for T< T,
g™ Tol1+2T,(@)/T - 3T, (@)/Tc)"? (16a)

and

X@,0~pCl1+2T @/T-3T,@/Tc]™, (16b)

with To(@) =J(@)/% and To=J(q =0)/k. Here T, is
the correlation time for the flipping motion of a
noninteracting dipolar group and the factor 7/

[T - To(@Q)] represents the critical slowing down of
the quasi-spin-wave fluctuations with wave vector
g4 due to the interaction

J@ =2, Jyye R
between the dipolar groups in the system.

A rough estimate of the sum occurring in Eq.
(12) can be obtained by using

Tc(Q)':Tc(l— aqa) (17)

(where for nearest-neighbor interactions a=4d™2
with d being the nearest-neighbor distance between
the dipolar groups) and by replacing the summa-
tion over all ¢ values within the first Brillouin
zone by an integration over a sphere:

Z x"g, w)=(v/2r®) [ ™*q*dg x""(w,q) (18)

where gpae= (672/V)/3. For the spectral density
of the fluctuations of the lattice part of Hamiltonian
(1) due to the ferroelectric quasi-spin-wave mode,
one thus finds

|4 . 32
J‘k’(w)=— Z AF ® 2
k 4N a(o:',s=B|' oo, BB, I 772
XIT,Tc, agly, wry)t,, (19)
where, for T>T,
I=(T/T*T,/(T=- T2 % (uy,a) , (20)
whereas, for T<T.,
_ e
1= L2 ) K(un, a), (21)

[1/2(T.-T)- 1T

; 2
with  K(u,, q) = :’"(.ﬁ%%mr_ (222)

Here
Up= ch/(T_ Tc)]l/z al/zqm
and

Um=|T/2(Tc-T) - 1]1/2a /2,

for T>T, (22Db)

for T<T., (22¢)

whereas a=wt,T/(T-T¢) for T>T, (22d)

and a=wT,T/2(T¢c-T) for T<T¢ . (22)

The general expression for & («,,,a) is rather
lengthy and is given in Appendix A. For a-0

(or, what is the same, wTy<<1), however, this ex-
pression becomes rather simple:

K(u,,0)=%[arctan u, - u,/(1+u?)]. (23)

To get a rough estimate of the temperature de-
pendence of T, in the vicinity of the Curie point,
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we can now treat two limiting cases #,, -« and «,,
~0. For a'/?q,-=, we have

I=37[ To/(T-TG)]Y?  for T>T, (24a)
and I=37[Tc/2(Tc—-T)]*? for T <Tg. (24b)
For a'”g,-0, on the other hand, we
get

I= 4oV P[Te/(T =T, T>Tc (25a)
and
I=HaV2q P[T/2(Tc-T)?, T<Tc. (25b)

In the first of these two limiting cases, we thus ob-
tain for the temperature dependence of T; near the
Curie point

Ty |T-Tc|"?, (26a)

whereas in the second case we get a result which
was already obtained in a previous paper*:

TIOC(T" Tc)z: a1/2qm_’0 .

1/2
At gp—->,

(26D)

It should be stressed that very close to the
Curie point we shall always be in the limit % ,-~
so that T, will be proportional to T — T I"/2 if
the Kubo expression for y(g, w) is still valid.

APPLICATION TO DSP
Let us now apply these results to polycrystalline
DSP where the flipping of two out of the six
CHCH,CO, groups in the unit cell gradually freezes

in on approaching 7' from above.
For the case of a polycrystalline sample

1 2
= 4 “)
N @ <a’, BB’ =
g%<IAF‘QL¢:¢'(CI'IZ)|z>av'+'%'2< '(lAFaa’(CH3)|z>av ’
ala
(27)

|AF o0, e

2 :‘15 E (lAFaa’,BB'
ala’

where the symbol ( ),, designates an isotropic pow-
der average over all possible orientations of the
propionate groups with respect to the direction of
the external magnetic field.

Since only two out of the six propionate groups
are involved in the quasi-spin-wave mode and thus
undergo the critical slowing down, one has

Ti1= (771, +(T1Y), , (28)
(T1)),=4(2/5T%2+ 3/5T¢ "), (292)
and (T7Y),=%(2/5Tf %+ 3/5TF ™), | (29D)

with the index a standing for the anomalous “pure
flipping” contribution and % for the normal contri-
bution to T3!. It is well known that

where

Fi. =8inb,,, coS04yr eXplitg ar 723 (30a)
and thao)t’= Sinzoaa' exp(zz'd)aa‘)r;z' ’ (30b)
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with 74, being the distance between the nuclei o
and o’ and with 6,," designating the angle between
the internuclear vector and the direction of the ex-
ternal magnetic field, which is a function of time
because of the flipping of the molecular group be-
tween the two equilibrium positions. As shown in
Appendix B, we obtain for the case that the flipping
axis is perpendicular to the H-H direction in the
CH,; group

(|aF &, |2)a = (1/7%y,) ¥ ¢ sin’B (31)
and (| AF G, |*a=(1/78s) X3 sin’8 (32)

where 7cn, is the proton-proton distance in the
CH, group and where g is the “flipping angle” of
the molecular axis which is determined by the dis-
tance between the two equilibrium sites.

In contrast to the —CH, group case the intra-
group magnetic dipolar interactions of the —CHj,
group protons are already partially averaged out
because of hindered rotation around the C; axis.
The flipping motion thus modulates only the re-
sidual part of the dipolar interactions. Assuming
that the flipping motion of the propionate group and
the —CHj group rotation are not correlated, we
obtain for the flipping contribution to the —CH;
spin-lattice relaxation rate (Appendix B)

Z() | aF¢e (CH,) %) = (1/7%n) ¥ 3 sin®p, (33)

<E S AFE: (CHy) [3) g = (1/7%) xFsin?p, (34)

if the flipping axis is perpendicular to the C; axis,
and

(1/TF%3) o= $(1/T, %), 7en,/Yen, - (35)

If the proton-proton distances in the —CH, and
—CH; groups are about equal, we get from Eq.
(29a) a simple expression for the ferroelectric
quasi-spin-wave flipping mode contribution (7},),
to the proton spin-lattice relaxation time in DSP:

(T, = 3.5(Tf"2), , (36)
where according to Eqs. (4) and (19)

(1 ) __9 32
T %), ~ 321
432
xJV sin®8 I(T, Tg, at’%q,)1y . (37)

CHy

The dielectric correlation time 7, in DSP is
known - from dielectric dispersion data (Fig. 2)
— to behave like

7o = 19 exp(+ E/kT), (38)
where E ~0.25 eV and 13=5x%10"15 sec, so that
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FIG. 2. Dielectric constant versus temperature at
various frequencies in DSP, following Ref. (8).

To{T = T¢) =2.3%107! sec justifying the approxi-
mation w;T;<< 1. From the unit cell dimensions
we get §pa ~0.28 A~ and ag?,, ~0. 25 for nearest-
neighbor coupling. The temperature dependence
of the anomalous contribution to the relaxation rate
is now fixed, and the above model can be checked
by comparing the observed and predicted relaxa-
tion rates due to the freezing in of the quasi-spin-
wave mode.

The experimental relaxation rate due to the
critical “flipping” is obtained by subtracting the
“normal” relaxation rate from the observed total
relaxation rate. Since the rotational minimum is
far away from the region where the anomalous
flipping contribution is observable, this separation
can be done in a unique way. The resulting tem-
perature dependence of (T), is presentedin Fig. 3.

Taking the 7oy distance as 1.8 A and matching
the experimentalzand theoretical T,-versus-T
curves at one temperature, we get for the flipping
angle the rather reasonable value 3=38°. From
the room-temperature value of the proton second
moment, on the other hand, we obtain 8=40° (Ap-
pendix B). What is even more satisfactory is the
excellent agreement between the observed and
theoretical temperature dependences of the “anom-
alous” spin-lattice relaxation time in the para-
electric as well as in the ferroelectric phase
(Fig. 3).

It should be stressed that though the two equilib-
rium sites are not anymore equivalent below T,
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this asymmetry AE~2x107 eV is small com-
pared to 2T and its effect on (T,), can therefore be
neglected.

If one, on the other hand, interprets the T';
anomaly as a normal BPP minimum, *° which oc-
curs when the correlation time for the thermally
activated molecular motion is of the order of the
inverse Larmor frequency, one obtains an impos-
sibly short value for 79 (~ 107 sec) and too large
an activation energy E,=1.3 eV. Another defi-
ciency of this interpretation is that it cannot ex-
plain the frequency independence of the T, anomaly.

The above results thus seem to show that the T,
anomaly at T in DSP is indeed the result of mag-
netic dipolar spin—-quasi-spin-wave coupling to a
ferroelectric “flipping” mode, and that the theory
presented in this paper is not a too unreasonable
approximation.
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APPENDIX A

We wish to evaluate the integral [Eq. (22)]

2
% _ [vm _udu
(@) [; A+ 2Fid (A1)
in its general form. Using
Um u?du
X a)= (1 +u®+ia®)(1 +u? —ia?)
CapSr(CHy CHy CO0)g;vy= 15,2 Mc/s
o o powder 7]
—theory
(-]
_ k- -
=k e
L 4
10+ b
0 A L L N | T S
-6 -4 =2 0 2 Lx107?
T-Tc
Te

FIG, 3. Comparison of the theoretical (solid line)
and experimental (circles) temperature dependences o.
the “anomalous” proton spin-lattice relaxation time in
DSP near Tg¢.
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. u . 2 . 2
Z m( 1—ia 1+ia
—EJE’[ [l+u2—iaz_1+u2+iaz]du’ (A2)

we get
1
5 )= o3 (4101 +0) 2 1112

iy (LEa)Y2 v ul + 20, {5[(1 +a*)2 — 112

(1 +a4)1/2 +u72:1 _ zum{%[(1'+a4)1/2 _ 1]}1/2

- 2{%[(1 +a4)1/2 _ 1]}1/2

{2[ +a*)2+ 112,
(1 +a4)1/2 '“?n /

This reduces in the limit a - 0 to Eq. (23).

x arctan (A3)

APPENDIX B

Let us now sketch the derivation of Eqs. (31)-
(34) as well as of the theoretical expression for
the proton second moment of powdered DSP at
room temperature.

Introducing the Euler angles 9, ¢, and ¥ [see
Fig. 4(a)] - as described in Ref. 12 — one obtains
from (30a) and (30b) for the case of the — CH,
group

F4q+(CH,) = (e*/7&n,{sin9 sing (¢)
X[cose (t) +i cos9sing ¢)]}, (B1)

where 9 is the angle between the direction of the
external magnetic field and the flipping axis, and
where ¢ is time dependent because of flipping be-
tween the two equilibrium sites: ¢(1)=¢,0(2)=¢
+B. Hence,

AF =F8i(r,9,0,0) =F R (r, 9, 0 +8,9) (B2)

if the flipping axis is perpendicular to the interpro-
ton vector i"cuz in the — CH, group. Inserting (B1)
into (B2), squaring, and performing a powder aver-
age over 9 and ¢, we get Eq. (31):

(| AP (CH,) |2 ay= (1/785,) XE sin?B . (B3)
Similarly, we have

F&,(CH,)= (ezw/r%ﬂz)[coscp (t)+icos9sing(t)]? .
(B4)

Using the procedure described above, we get
Eq. (32) from (B4) in a straightforward way.

In case of the CH; group because of simultaneous
rotation and flipping, 9 as well as ¢ are time de-
pendent. Using a somewhat different set of Euler
angles as before, where now 9 and ¥ are time de-
pendent because of flipping, and gbecause of both
flipping and hindered rotation [see Figs. 4(b) and
4(c)], we get

i9(8)
Fio(CHy) =55

CHy

{sins(¢) sing (#)

AND LAHAJNAR

jr-

Z'|l flipping axis zllHo

\ Line of nodes

20 rotation axis 2o

N Bl
\\/ // lipping axis
AN

\

v

(b)

(c)

FIG. 4. Euler angles ¥4, ¢, and ¥ used for the de-
scription of the —CH, and — CH;z motion.

X[cosg (t) +icosd(t)sing ()]}  (B5)

and
@ e2iut®)

Foor (CH3) =3
7cH

[cos (£) +7 cosd(t) sing (£)]? .
s (B8)

Since the fluctuations due to flipping and rota-
tion are not correlated, the autocorrelation func-
tion of AF(ck}’IS is given by a sum of products of the
various autocorrelation functions for flipping and
rotation. The pure flipping contribution is ob-
tained in the limit of an infinitely short rotational
correlation time as



1
E <| AF&Q'(CHS)P)“: _38———
ot 167 ¢cu,
X{|ei*15in29, - e%25in29, %), , (B7)
3

Z <,AF¢§4202'(CH3)!2>“= 5,6__
aa’ CHg

x(| e?*¥1 5in?9, — e?**2 5in%9, |?),, , (B8)

where the angles 9, 9;, ¥;, and ¥, are defined in
the Figs. 4(b) and 4(c). Using well-known rela-
tions for the spherical triangles to express 9;, 9,
and (¥, —¥,) in terms of the flipping angle B, one
obtains, after taking the powder average, Eqs.
(33) and (34).

At room temperature, all propionate groups in
DSP are flipping with a frequency which is large
as compared to the rigid lattice proton linewidth.
The second moment of such a group is

My=3(M,(CH,)) +£(M,(CH,)) + a? , (B9)

where the symbol () designates an average over
molecular motion. M,(CH;) and M,(CH,) stand for
the second moments of the isolated - CH; and — CH,
groups, respectively, and a? is the intergroup con-
tribution to the second moment. For the case of

a polycrystalline sample, we have

My =3 721 /NI +1) 2 (FP0ND) ., (B10)
i<kr
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where Fj2 is

Fi2= (1 -3 cos?0 )3 (B11)

and N stands now for the number of nonequivalent
nuclei in the group under consideration.

Introducing the Euler angles and using for the
“flipping” average

FOWN=51+p]F @, 9,0,

+2[1-pIF O, 9,0,) , (B12)
we get for the — CH, group contribution
(Mo(CH) 1145 = 7' 1[I +1)/72,]
X1 -1 -p*)sin’] . (BI13)

In case of the —~ CH; group, in addition to ¢, the
angles ¥ and 9 are also time dependent. We get

<M2(CH3)>fliv+ rot
= <M2(CH3)>rot [1 _%(1 "Pz) Sinaﬁ] .

Assuming Ve, ¥ Vo, © 1.8 j&, we get for the rigid
lattice values of M,(CH,) and M,(CH,) 10 and 20 G2,
respectively. As (M,(CH;)),or =3 M5(CHy)=5 G2,

we can fit the experimental data with a flipping
angle of $=40°. The - CH, and — CH; contributions
are then (M,(CHy))g15,=6.3 G® and (M,(CH3 ot + 1119
=3.2 G?, so that M,~4.5 G%, if a? is negligible.

(B14)

TWork based in part on work performed under the aus-
pices of the U. S. Atomic Energy Commission.

*Permanent address: University of Ljubljana, Insti-
tute “J. Stefan,” Ljubljana, Yugoslavia.

'w. Cochran, Advan. Phys. 18, 157 (1969).

’P. G. de Gennes, Solid State Commun. 1, 132 (1963);
R. Brout, K. A. Muller, and H. Thomas, ibid. 4, 507
(1966).

%A. Rigamonti, Phys. Rev. Letters 19, 436 (1967);

V. H. Schmidt and E. A. Uehling, Phys. Rev. 126, 447
(1962). .

‘R. Blinc and S. Zumer, Phys. Rev. Letters 21, 1004

(1968).
For a review see, for instance, the article of R.
Bline, in Advances in Magnetic Resonance, edited by
J. S. Waugh (Academic, New York, 1968), Vol. 3, p. 141.
B. Matthias and J. Remeika, Phys. Rev. 107, 1727

(1957).

"H. Maruyuma, Y. Tomiie, I. Mizutami, Y. Yamazuki,
Y. Uesu, N. Yamada, and J. Kobayashi, J. Phys. Soc.
Japan 23, 899 (1967); 23, 900 (1967).

g, NaKarpura and M. Hosoya, J. Phys. Soc. Japan 23,
844 (1967).

%V, Dimic, M. Osredkar, and J. Petkovsek, Phys.
Letters 25A , 123 (1967).

A, Abragam, The Principles of Nuclear Magnetism
(Clarendon, Oxford, 1961), p. 289.

M. Suzuki and R. Kubo, J. Phys. Soc. Japan 24, 51
(1968).

2H. Goldstein, Classical Mechanics (Addison-Wesley,
Cambridge, Mass., 1950), p. 107.

BE. Nakamura, K. Hikichi, and J. Furuichi, J. Phys.
Soc. Japan 23, 471 (1967).



